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FDA Modernization Act, 2022 — Reduce Animals Use in Drug Testing

Congress Approves Landmark Measure to
Reduce Animal Testing

FDA Modernization Act promises to spare animals, bring safer and
better treatments to patients, and drive down drug prices

December 23, 2022 18:48 ET| Source: Animal Wellness Action m

https://www.globenewswire.com/news-release/2022/12/23/2579295/0/en/Congress-Approves-Landmark-Measure-to-Reduce-Animal-
Testing.html



3Rs Principle — guiding principles for ethical use of animals

First described by W. M. S. Russell and R. L. Burch in 1959.11

The 3Rs are: Using In-vitro Data and In-silico Method

1.Replacement: alternative methods which avoid or replace the use of animals in research

2.Reduction: use of methods that enable researchers to obtain comparable levels of
information from fewer animals, or to obtain more information from the same number of

animals.
3.Refinement: use of methods that alleviate or minimize potential pain, suffering or distress,
and enhance animal welfare for the animals used.

[1] Russell, W.M.S. and Burch, R.L., (1959)
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https://en.wikipedia.org/wiki/W._M._S._Russell
https://en.wikipedia.org/w/index.php?title=R._L._Burch&action=edit&redlink=1
https://en.wikipedia.org/wiki/Three_Rs_%28animal_research%29

Advancements of In-vitro System

Benefits
* Established protocols
* Cost-effective

i 3D Culture
e ey o Omanis BCIPSAK)
* Limited complexity Celllines ECm ECM

e Static environment

Microfluific Device
Organ-on-chip
Fluid flow

* Frequently inaccurate
in predicting human
responses

* Low relevance to
human physiology
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Benefits

* Physiological Relevance
* Dynamic environment
* Reduced animal testing
* Real-time monitoring

Disadvantages

* High cost
* Technical complexity




Increasing interest of Organ-on-a-Chip (OoC) technology

for ADME

Publication of lung-on-a-chip in
science

Publication of microscale cell culture
analog (CCA) system for multi-organ
modeling
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Wide development of OoC
since 2010 with progress on
polymers, microfluidics and
tissue engineering
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Various organ-on-a-chip systems and applications
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Liver-chip: Example of the PhysioMimix® Platform Liverchip
"Mimicking as close as possible the haemodynamic and 3D architecture of the liver"

Collagen-coated 3D scaffold
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Scheme of one chamber of the plate with 1 scaffold

The applied medium flow is controlled very carefully, thereby mimicking blood flow and vessels
300 channels/scaffold and flow rate at 1 pL/sec, governed by physiological flow and shear stress observed in vivo

« Channel width: ~ 0.3 mm, governed by tissue morphogenesis

« Channel depth: ~ 0.2 mm, governed by oxygen transport limitation

6
Non-PDMS-based chip

f. Vivares et al., Xenobiotica
Sanorl
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Which in-silico method is Superior for Human Hepatic CL
Estimation?

Increasing degree of complexit

Conventional Mechanistic Model
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Mechanistic Modeling Approach

* Model mapping hardware (OoC conditions) and biological Processes

Evaporation T ‘T‘

ENe

Mechaistic .Mcfil\ :

[ L=

Hardware
Media volume,
Cell number,
Evaporation

Interstitium

Biological Cellular binding
Processes Permeability (P) Intracellular

Metabolism, Partitioning (k) Clearance

Permeability, f
Estimadte
1. Maximal information used to develop

Partitioning
Physico-Chemical mathematical model
logP, MW, 2. Deconvolute active and passive
Media binding processes
solubility 1. Metabolism
2. Partitioning, permeability
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Non-Specific Binding (NSB) Modeling

\ PK experiment

( Empty-chip experiment

2

vaporation

n o )

Interstitium

.

Assumptions Adsorption to plastic:
Reversibility: Binding capacity:

+ Reversible Binding +  Unlimited capacity T

Clearance

o

NSB modeling workflow, a two-step process:
1. Developing compartmental model for media <-> NSB binding
Fitting parameters/rates/% binding > NSB parameters

2. Expanding liver Mechanistic Model with NSB binding

Implementing parameters from step 1 and re-fit clearance
Comparing predictions with and without NSB
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Experimental Design

« Set of different hepatic predominant cleared small molecular drugs (N=11)

» Diverse hepatic enzymes involved

« Assuming negligible non-hepatic metabolism

« High/Mod/Low extraction with clinical PK data available

Compound pKa logP fup RBP fUinc (():Es(er;\ll-e/i‘?rl‘a/skn;? MeEt:zby(:‘I::isng
Dextromethorphan 8.85 3.47 0.5 1.76 0.84 8.6 CYP2D6, CYP3A4
Diclofenac 4.2 4.5 0.010 0.55 0.09 7.6 CYP2C9
Midazolam 6.04 3.27 0.017 0.55 0.076 10 CYP3A4, UGT2B7
Tolbutamide 5.27 2.34 0.04 0.75 0.56 0.21 - 0.38 CYP2C9
3.68 (most acid)
Repaglinide /4.82 (most 5.9 0.015 0.85 0.034 7.8
basic)
Lidocaine 7.75 2.44 0.302 0.84 0.863 10.6
Pioglitazone 5.19 3.53 0.01 0.67 0.14 0.8-1.7
Troglitazone 10.8 3.7 0.026 0.55 002 66 ‘(éll/'FS) =D
Propranolol 9.1 3.6 0.13 0.83 0.73 15 UGT
Compound A 12.1 3.42 0.01 0.75 0.47 14 - 17
Compound B 4.1 5.5 0.0003 0.60 0.012 1.4-1.9 UGT1A4, CYP2C8

« Different biological donors: RAS (n=2), S1610T (n=2), S1682T (n=2)

« Control for assessing Non-specific binding kinetic

sanofi

fup: fraction of drug unbound in plasma
Rep: blood-to-plasma concentration ratio

fuinc: unbound fraction of drug investigated in the medium
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Compare Predictable Performance of Conventional Approach vs. Mechanistic Model

Literature

Reported
Total hepatic
Q clearance

Reported
CL

Conventional
Approach
Total hepatic
clearance

Conventional
approach

Media

Mechanistic model
Total hepatic
clearance

Interstit
ium

Clearance m
o)

Mechanistic
model

Intracell
ular

Clearance CL Pred
Accuracy
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Mechanistic Model Fits (On-chip PK)
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Model fits On-chip PK were adequately fitted using Mechanistic Model

* Compounds A&B logP was calibrated with OoC data
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Internal

Mechanistic Modeling Approach is superior in Estimating Human Total CL

Human total plasma heaptic clearance (CLh) : Reported CL vs Pred

Conventional Mechanistic Model
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Note: Dotted and dashed lines are boundaries of 2- and 3-fold change, respectively.

Summary of Predictability of Human CL; n(%)

% of f;:ﬂ;unds Conventional
4 (36%) 9 (82%)
1(9%) 1 (9%)
6 (55%) 1(9%)

f.
) ;O n o I * Compounds A&B logP was calibrated with OoC data



Internal

Compare Predictable Performance of Conventional Approach vs. Mechanistic Model
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Internal

Comparison of PBPK Human Plasma PK Profiles Predictions with Human Total Clearance Estimations

from Different Sources
vs. Conventional vs. Mechanistic Model
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Human PBPK model plasma PK predictions, based on total clearance (CL)
estimations from both mechanistic model simulations and literature, are comparable
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Internal

Superior Accuracy of Human Plasma PBPK AUC Predictions using Mechanistic

Model Total CL Estimation

sanofi
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+3-fold
+2-fold

-2-fold
-3-fold

% of fg':lpl(;unds Reported CL Conventional Mel\clli';a dn;istic
10 (91%) 7 (63%) 10 (91%) |
0 (0%) 2 (18%) 0 (0%)
1 (9%) 2 (18%) 1 (9%)



Key Take Home Messages

* Analyzing OoC data using mechanistic model is superior to conventional method in the accuracy of human
CL estimations because:
* Mechanistic Model can describe:

* Experiments conditions/phenomenon (media evaporation, non-specific binding to OoC material)
* Biological processes (drug distribution between media, interstitium and intracellular)

* Integrating mechanistic model total human CL estimation in PBPK model, allowing adequate human PK

profiles prediction
* This approach could be adopted for routine small molecules’ PK evaluations for human translation in drug

discovery phase
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Thank you!
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